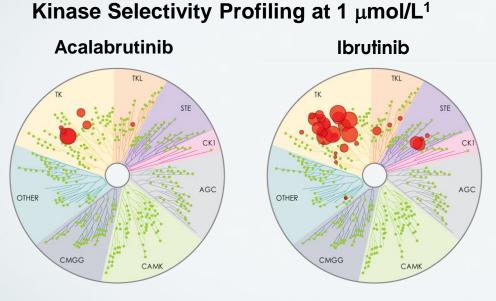

ACALABRUTINIB

Simon Rule Professor of Clinical Haematology Consultant Haematologist Derriford Hospital and Peninsula Medical School Plymouth UK

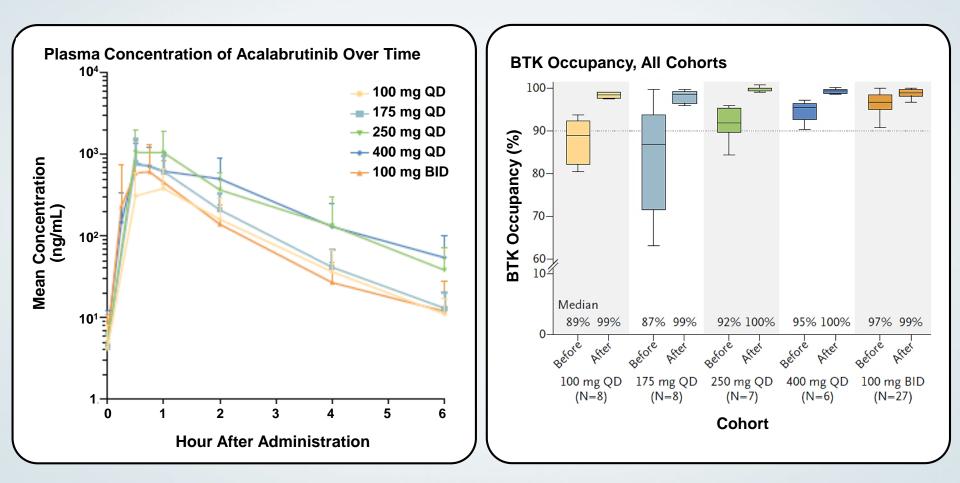
ACALABRUTINIB: A HIGHLY SELECTIVE, POTENT BRUTON TYROSINE KINASE (BTK) INHIBITOR


Acalabrutinib was developed to increase the degree of BTK inhibition

- Very low binding to interleukin-2 inducible T-cell kinase (ITK), TEC protein tyrosine kinase (TEC), and epidermal growth factor receptor (EGFR)
- Acalabrutinib selectively binds with a short half-life allowing twice-daily dosing and near total BTK inhibition
 - Potentially reducing drug resistance
- Acalabrutinib appears to improve substantially on the specificity of first generation BTK inhibitors

ACALABRUTINIB (ACP-196)

- Acalabrutinib is a highly selective, potent BTK inhibitor
- Minimal off-target effects on TEC, EGFR, or ITK signaling in vitro



Larger red circles represent stronger inhibition

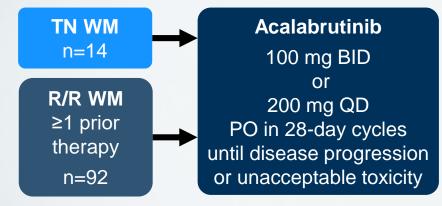
Kinase Inhibition IC₅₀ (nmol/L)¹


Kinase	Acalabrutinib	Ibrutinib
BTK	5.1	1.5
TEC	93	7.0
BMX	46	0.8
ТХК	368	2.0
ERBB2	~1000	6.4
EGFR	>1000	5.3
ITK	>1000	4.9
JAK3	>1000	32
BLK	>1000	0.1

PHARMACOKINETICS/PHARMACODYNAMICS

1-hour half-life; rapid oral absorption; complete BTK occupancy

ACALABRUTINIB TWICE-DAILY DOSING (COMPLETE AND CONTINUOUS BTK COVERAGE)


Acalabrutinib in Patients With Waldenström Macroglobulinemia

Roger Owen,¹ Helen McCarthy,² Simon Rule,³ Shirley D'Sa,⁴ Sheeba Thomas,⁵ Francesco Forconi,⁶ Thomas Anderson,⁷ Marie José Kersten,⁸ Pier Luigi Zinzani,⁹ Sunil Iyengar,¹⁰ Jaimal Kothari,¹¹ Monique Minnema,¹² Efstathios Kastritis,¹³ Dih-Yih Chen,¹⁴ Raquel Izumi,¹⁴ Diana Mittag,¹⁵ Priti Patel,¹⁴ J. Greg Slatter,¹⁴ Helen Wei,¹⁴ and Richard R. Furman¹⁶

¹St James's University Hospital, Leeds, UK; ²Royal Bournemouth Hospital, Bournemouth, UK; ³Plymouth University Medical School, Plymouth, UK; ⁴University College London Hospitals NHS Trust, London, UK; ⁵MD Anderson Cancer Center, Houston, TX, USA; ⁶University of Southampton Hospital Trust, Southampton, UK; ⁷Texas Oncology-Bedford, Bedford, TX, USA; ⁸Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; on behalf of the Lunenburg Lymphoma Phase I/II Consortium – HOVON/LLPC; ⁹Institute of Hematology University of Bologna, Bologna, IT; ¹⁰Royal Marsden Hospital, London, UK; ¹¹Churchill Hospital, Oxford, UK; ¹²University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands; on behalf of the Lunenburg Lymphoma Phase I/II Consortium – HOVON/LLPC; ¹³National and Kapodistrian University of Athens, Athens Greece; ¹⁴Acerta Pharma, South San Francisco, CA, USA; ¹⁵Acerta Pharma, Oss, The Netherlands; ¹⁶Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA

ACE-WM-001: ACALABRUTINIB MONOTHERAPY IN WM

- Enrollment: September 8, 2014, through December 24, 2015, at 27 sites in 6 countries
- Data cutoff: February 13, 2018

All 200-mg QD patients (n=1 TN; n=5 R/R) were switched to 100 mg BID

Co-primary endpoints:

- ORR by investigator assessment based on the 6th IWWM Criteria¹
- ORR by investigator assessment based on the modified 3rd IWWM Criteria²

Key secondary endpoints:

- DOR, PFS, OS
- Safety
- Pharmacokinetics

Exploratory endpoint:

• Pharmacodynamics

1. Owen RG, et al. Br J Hematol. 2013;160:171-176. 2. Kimby E, et al. Clin Lymphoma Myeloma. 2006;6(5):380-383.

BID = twice daily; DOR = duration of response; IWWM = International Workshop on WM; ORR = overall response rate; OS = overall survival; PFS = progression-free survival; PO = orally; R/R = relapsed/refractory; TN = treatment naive; WM = Waldenström macroglobulinemia.

KEY ELIGIBILITY CRITERIA

- Inclusion criteria:
 - TN cohort: patients with confirmed WM requiring treatment who are not eligible for chemoimmunotherapy
 - − R/R cohort: relapsed after or refractory to \geq 1 prior therapy for WM
 - Serum IgM > ULN or measurable nodal disease (≥ 1 lymph node ≥ 2 cm in longest diameter)
 - ECOG PS ≤2
- Exclusion criteria:
 - Prior BTK inhibitor therapy
 - Significant cardiovascular disease (uncontrolled or symptomatic arrhythmias, congestive heart failure, or myocardial infarction within 6 months of screening, or any NYHA III-IV cardiac disease, or QTc >480 ms). Patients with prior or concurrent atrial fibrillation were not excluded
 - Required treatment with vitamin K antagonists or proton pump inhibitors

BASELINE PATIENT CHARACTERISTICS

Characteristic	TN (n=14)	R/R (n=92)
Median age (range), years	73 (48-86)	69 (39-90)
Male sex, n (%)	10 (71)	63 (68)
ECOG PS ≤1, n (%)	12 (86)	88 (96)
Median time since initial WM diagnosis (range), years	0.4 (0.04-5.8)	6.1 (0.16-25.4)
Bone marrow involvement, n (%)	14 (100)	89 (97) ^a
Extramedullary disease, n (%)	9 (64)	59 (64)
Lymphadenopathy ≥1.5 cm	7 (78)	50 (85)
Splenomegaly ≥13 cm	4 (44)	26 (44)
Median serum IgM (range), mg/dL	4,615 (633-7530)	3,565 (291-9740)
>4,000 mg/dL, n (%)	9 (64)	37 (40)
Median absolute neutrophil count (range), cells ×10 ⁹ /L	3.2 (0.4-7.6)	2.9 (0.6-9.2)
Median hemoglobin (range), g/dL	9.8 (6.2-14.1)	10.6 (6.0-15.4)
<11 g/dL, n (%)	11 (79)	53 (58)
<10 g/dL, n (%)	9 (64)	35 (38)
Median hematocrit (range), %	30 (19-41)	33 (19-46)
Median platelets (range), cells/mm ³	187,000 (36,00-364,000)	203,000 (20,000-526,000)
<100,000 cells/mm ³ , n (%)	2 (14)	11 (12)

^a The remaining n=3 patients were indeterminant.

ECOG PS = Eastern Cooperative Oncology Group performance status; Ig = immunoglobulin; R/R = relapsed/refractory; TN = treatment naive; WM = Waldenström macroglobulinemia.

PRIOR THERAPIES

Characteristic	R/R (n=92)
Median no. of prior therapies (range)	2 (1-7)
≥3 prior therapies, n (%)	41 (45)
Refractory disease, n (%) ^a	33 (36)
Prior therapies, n (%)	
Anti-CD20 therapy (single agent or part of a regimen)	80 (87)
Cyclophosphamide-based regimen	32 (35)
Chlorambucil-based regimen	29 (32)
Proteasome inhibitor-based regimen	28 (30)
Purine analogue +/- rituximab	21 (23)
Bendamustine +/- rituximab	18 (20)
CHOP/CVP/COP +/- rituximab	18 (20)
Purine analogue + cyclophosphamide +/- rituximab	15 (16)
Other ^b	22 (24)

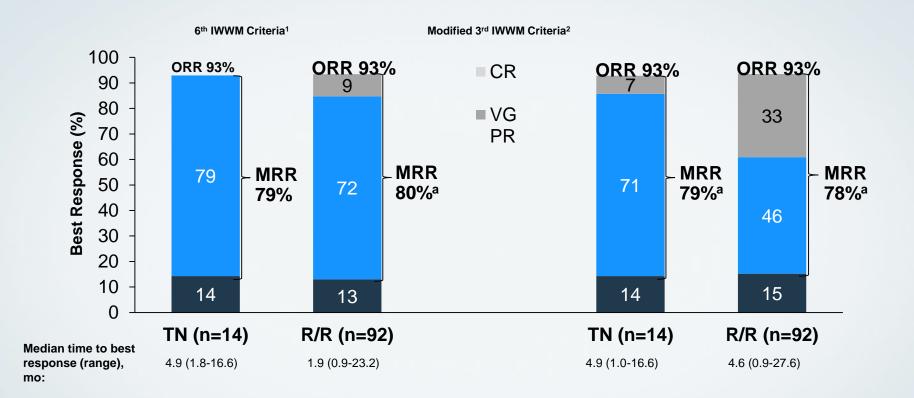
^a Best overall response rate was stable disease or progressive disease.

^b Includes plasmapheresis (n=7), other chemotherapy regimens not listed (n=6), DHAP/ESHAP +/- rituximab (n=4), corticosteroids alone (n=3), IMiD alone (n=3), IMiD + cyclophosphamide-based regimen (n=2), and proteasome inhibitor + cyclophosphamide-based regimen (n=1). R/R = relapsed/refractory.

PATIENT DISPOSITION

• At a median follow-up of 27.4 months, 72% of all patients remain on study therapy

Characteristic	TN (n=14)	R/R (n=92)
Median follow-up (range), months	29.2 (10.2-32.9)	27.3 (4.6-40.7)
Remain on acalabrutinib, n (%)	7 (50)	69 (75)
Reason for discontinuation of acalabrutinib, n (%)		
Disease progression	0	9 (10)
Adverse event ^a	3 (21)	4 (4)
Investigator's discretion ^b	2 (14)	4 (4)
Death ^c	1 (7)	3 (3)
Withdrawal of consent	1 (7)	1 (1)
Initiation of alternative cancer therapy ^d	0	2 (2)


^a Adverse events leading to discontinuation in TN patients: coronary artery disease, Crohn's disease, and increased transaminases (n=1/each); in R/R patients: cold-type hemolytic anemia, glioblastoma multiforme, malignant ascites, seizure (due to glioblastoma), and metastatic malignant melanoma (n=1/each).

^b Removed from study by investigator decision due to inadequate response (n=3); overall clinical decline not related to a specific AE (n=2); not having a confirmatory IgM for PD (n=1). ^cTN (n=1): ischemic heart disease (not treatment-related); R/R (n=1 each): chronic inflammatory demyelinating polyneuropathy (not treatment-related), intracranial hematoma (treatment-related), and unknown (317 days after last dose).

^d Due to esophageal cancer (n=1) and unresponsiveness to acalabrutinib treatment leading to initiation of another therapy (n=1).

AE = adverse event; PD = progressive disease; IG = immunoglobulin; R/R = relapsed/refractory; TN = treatment naive.

RESPONSE TO ACALABRUTINIB

^a MRR may not equal PR + VGPR + CR as shown due to rounding.

CR = complete response; IWWM = International Workshop on Waldenström macroglobulinemia; MR = minor response; MRR = major response rate (> PR); ORR = overall response rate

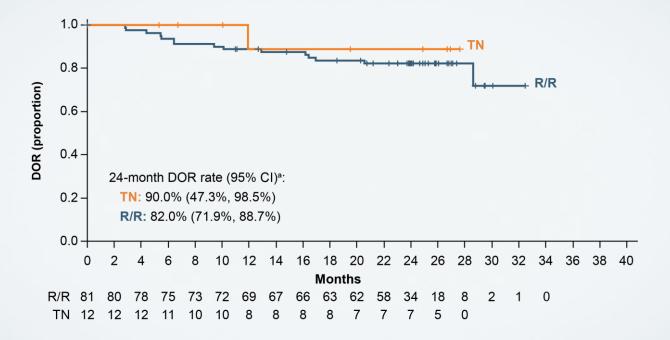
(≥ MR); PR = partial response; R/R = relapsed/refractory; TN = treatment-naive; VGPR = very good partial response.

1. Owen RG, et al. Br J Hematol. 2013;160:171-176. 2. Kimby E, et al. Clin Lymphoma Myeloma. 2006;6(5):380-383.

RESPONSE TO ACALABRUTINIB: SUBGROUP ANALYSIS

- ORR was consistent across • prespecified subgroups, including patients with:
 - \geq 3 Prior therapies (95.5%) _
 - Age ≥65 years (93.4%) _

						<u>N</u>	OKK	95% CI
All patients					нė́н	106	93.4	(86.9, 97.3)
Age category								
<65 years					⊢•	30	93.3	(77.9, 99.2)
≥65 years					⊢∳i	76	93.4	(85.3, 97.8)
Baseline ECOG PS score								
0					H	55	96.4	(87.5, 99.6)
≥1					н	51	90.2	(78.6, 96.7)
Baseline Hemoglobin								
<110 g/L					⊢e∔	64	89.1	(78.8, 95.5)
≥110 g/L					Ļ	42	100	(91.6, 100.0)
Baseline IgM								
<4000 mg/dL					н	60	93.3	(83.8, 98.2)
≥4000 mg/dL					⊢. ⊢.	46	93.5	(82.1, 98.8)
Prior number of regimens								
1-3					⊢∳I	84	92.9	(86.1, 97.3)
>3					⊢	22	95.5	(77.2, 99.9)
	0	20	40	60	80 100			
	0	20	-0	00	00 100			

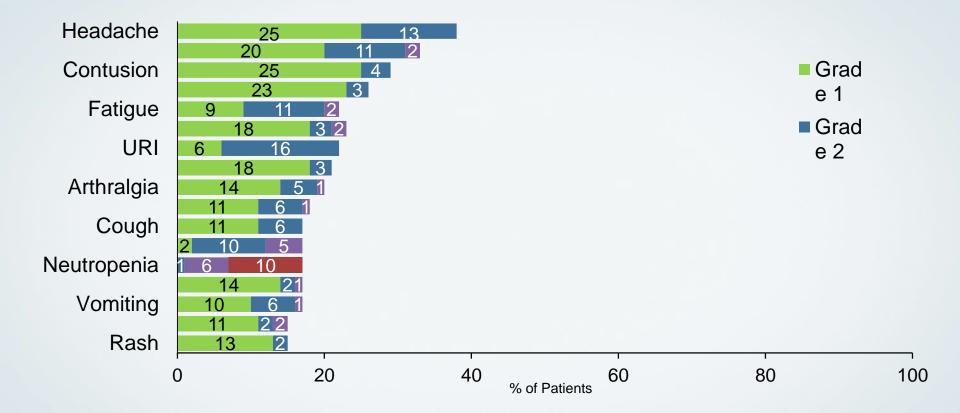

ECOG = Eastern Cooperative Oncology Group; Ig = immunoglobulin; ORR = overall response rate.

Overall Response Rate

0E0/ CI

DURATION OF RESPONSE

• Median DOR was not reached in either cohort


^a Investigator-assessed DOR using the Modified 3rd IWWM Criteria is shown. Results were consistent with those using the 6th IWWM Criteria. DOR = duration of response; IWWM = International Workshop on Waldenström macroglobulinemia; R/R = relapsed/refractory; TN = treatment-naive.

PROGRESSION-FREE SURVIVAL AND OVERALL Owen R, et al. EHA 2018 SURVIVAL

Median PFS and OS were not reached • OS **PFS**^a 1.0 1.0 0.8 0.8 R/R R/R PFS (proportion) OS (proportion) 0.6 0.6 0.4 0.4 24-month OS rate (95% CI): 24-month PFS rate (95% CI): TN: 91.7% (53.9%, 98.8%) TN: 90.0% (47.3%, 98.5%) 0.2 -0.2 R/R: 88.9% (80.4%, 93.9%) **R/R:** 81.9% (72.1%, 88.5%) 0.0 0.0 2 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 6 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 0 4 2 0 Months Months R/R 87 87 87 86 84 83 81 81 80 76 75 72 46 18 13 5 3 2 1 0 R/R 87 85 83 80 77 76 73 72 72 68 66 65 65 29 12 9 1 1 1 1 0 TN 13 13 13 13 13 13 11 11 11 11 10 10 10 8 6 2 0 TN 13 12 12 12 11 10 9 9 9 9 8 7 7 7 1 0

^a Investigator-assessed PFS using the Modified 3rd IWWM Criteria is shown. Results were consistent with those using the 6th IWWM Criteria. IWWM = International Workshop on Waldenström macroglobulinemia; OS = overall survival; PFS = progression-free survival; R/R = relapsed/refractory; TN = treatment-naive.

MOST COMMON ADVERSE EVENTS^A (≥15% OF ALL PATIENTS [N=106])

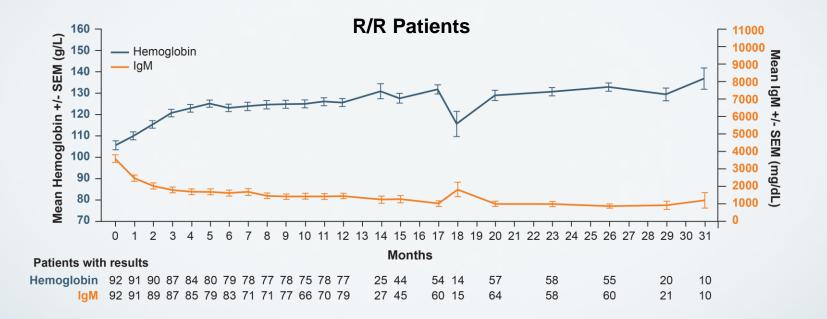
^a MedDRA preferred terms.

LRI = lower respiratory tract infection; URI = upper respiratory tract infection.

GRADE ≥3 ADVERSE EVENTS AND SERIOUS ADVERSE EVENTS

• Grade \geq 3 AEs occurring in \geq 5% of all patients:

	All Patient	All Patients (N=106)		
Preferred Term	Any Grade	Grade 3/4		
Neutropenia	18 (17)	17 (16)		
Lower respiratory tract infection	18 (17)	5 (5)		
Anemia	10 (9)	5 (5)		
Pneumonia	10 (9)	7 (7)		
Alanine aminotransferase increased	6 (6)	5 (5)		
Hyponatremia	5 (5)	5 (5)		

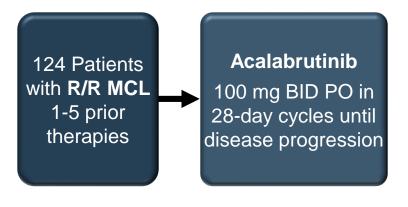

- SAEs occurred in 6 of 14 (43%) TN patients and 50 of 92 (54%) R/R patients
 - No SAE occurred in >1 TN patient
 - SAEs occurring in ≥3 R/R patients included lower respiratory tract infection (n=7), pneumonia (n=7;
 1 patient had aspergillus), pyrexia (n=4), cellulitis (n=3), fall (n=3), and sepsis (n=3)

KEY EVENTS OF CLINICAL INTEREST

- Atrial fibrillation occurred in 4 R/R patients and 1 TN patient
 - One event was Grade 3 (all others were Grade 1 or 2)
 - Study treatment was not held or discontinued in any patient
- Grade 3 hypertension occurred in 3 R/R patients
- Bleeding events occurred in 56% of all patients (commonly contusion [29%] and epistaxis [11%])
 - Three R/R patients had Grade 3 events (each in 1 patient):
 - Epistaxis, dysfunctional uterine bleeding, and retinal hemorrhage
 - All 3 Grade 3 events were resolved, and no patient discontinued study treatment

CHANGES IN SERUM IGM AND HEMOGLOBIN LEVELS

- Rapid reductions in IgM and improvement in serum hemoglobin occurred with acalabrutinib treatment in R/R patients
- Similar results were observed in TN patients


EFFICACY AND SAFETY OF ACALABRUTINIB MONOTHERAPY IN PATIENTS WITH RELAPSED/REFRACTORY MANTLE CELL LYMPHOMA IN THE PHASE 2 ACE-LY-004 STUDY

Michael Wang,¹ Simon Rule,² Pier Luigi Zinzani,³ Andre Goy,⁴ Olivier Casasnovas,⁵ Stephen D. Smith,⁶ Gandhi Damaj,⁷ Jeanette Doorduijn,⁸ Thierry Lamy,⁹ Franck Morschhauser,¹⁰ Carlos Panizo Santos,¹¹ Bijal Shah,¹² Andrew Davies,¹³ Richard Eek,¹⁴ Jehan Dupuis,¹⁵ Eric Jacobsen,¹⁶ Arnon P. Kater,¹⁷ Steven Le Gouill,¹⁸ Lucie Oberic,¹⁹ Taduesz Robak,²⁰ Todd Covey,²¹ Richa Dua,²¹ Ahmed Hamdy,²¹ Xin Huang,²¹ Raquel Izumi,²¹ Priti Patel,²¹ J. Greg Slatter²¹ and Wojciech Jurczak²²

¹University of Texas MD Anderson Cancer Center, Houston, TX; ²Plymouth University Medical School, Plymouth, United Kingdom; ³Institute of Hematology "Seràgnoli" University of Bologna, Bologna, Italy; ⁴John Theurer Cancer Center at Hackensack-UMC, Hackensack, NJ; ⁵CHU Dijon - Hôpital d'Enfants, Dijon, France; ⁶Fred Hutchinson Cancer Research Center, Seattle, WA; ⁷Institut d'Hématologie de Basse-Normandie, Caen, France; ⁸Erasmus MC, Lunenburg Lymphoma Phase I/II Consortium, Rotterdam, Netherlands; ⁹CHU de Rennes, Rennes, France; ¹⁰CHRU Lille - Hôpital Claude Huriez, Lille Cedex, France; ¹¹Clínica Universidad de Navarra, Pamplona, Spain; ¹²H. Lee Moffitt Cancer Center, Tampa, FL; ¹³University Hospital Southampton NHS Foundation Trust Southampton General Hospital, Southhampton, United Kingdom; ¹⁴Border Medical Oncology, Wodonga, VIC, Australia; ¹⁵Unité Hémopathies Lymphoïdes, AP-HP Hôpital Henri Mondor, Créteil, France; ¹⁶Dana Farber Cancer Institute/Harvard, Boston, MA; ¹⁷Academic Medical Center, Lunenburg Lymphoma Phase I/II Consortium, Amsterdam, Netherlands; ¹⁸CHU de Nantes - Hotel Dieu, Nantes, France; ¹⁹Institut Universitaire du Cancer - Oncopole Toulouse (IUCT-O), Toulouse, France; ²⁰Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland; ²¹Acerta Pharma, Redwood City, CA; ²²Dept of Haematology, Jagiellonian University, Krakow, Poland

ACE-LY-004: ACALABRUTINIB MONOTHERAPY IN R/R MCL

 Enrollment: March 12th, 2015, through January 5th, 2016, at 40 sites across 9 countries

Data cutoff: February 28, 2017

Primary endpoint:

 ORR by investigator assessment based on the Lugano Classification¹

Secondary endpoints:

- ORR by Independent Review Committee (IRC) assessment
- DOR, PFS, OS
- Safety
- Pharmacokinetics and pharmacodynamics

Exploratory endpoints:

- Time to response
- IRC-assessed ORR per the 2007 International Harmonization Project criteria²

BID = twice daily; DOR = duration of response; MCL = mantle cell lymphoma; ORR = overall response rate; PFS = progression-free survival; PO = orally; R/R = relapsed/refractory.

1. Cheson BD, et al. J Clin Oncol. 2014;32:3059-68. 2. Cheson BD, et al. J Clin Oncol. 2007;25:579-86.

KEY ELIGIBILITY CRITERIA

Inclusion criteria:

- Relapsed after or refractory to 1-5 prior treatments
- Confirmed MCL with translocation t(11;14)(q13;q32) and/or overexpressed cyclin D1
- Measurable nodal disease (≥1 lymph node >2 cm in longest diameter)
- ECOG PS ≤2
- Age ≥18 years

Exclusion criteria:

- Significant cardiovascular disease:
 - Uncontrolled or symptomatic arrhythmias
 - · Congestive heart failure or myocardial infarction within 6 months of screening
 - Any Class 3 or 4 cardiac disease as defined by the New York Heart Association Functional Classification
 - QTc >480 ms
- Concomitant use of warfarin or equivalent vitamin K antagonists
- Previous treatment with BTK inhibitors

BASELINE PATIENT CHARACTERISTICS

Characteristic	N=124
Median age, years (range)	68 (42-90)
Male sex, n (%)	99 (80)
ECOG PS ≤1, n (%)	115 (93)
Simplified MIPI score, n (%) ^a	
Low risk (0-3)	48 (39)
Intermediate risk (4-5)	54 (44)
High risk (6-11)	21 (17)
Ann Arbor Stage IV disease, n (%)	93 (75)
Tumor bulk, n (%)	
≥5 cm	46 (37)
≥10 cm	10 (8)
Extranodal disease, n (%)	90 (73)
Bone marrow	63 (51)
Gastrointestinal	13 (10)
Lung	12 (10)

^a Missing data, n=1 patient.

ECOG PS = Eastern Cooperative Oncology Group performance status; MIPI = Mantle Cell Lymphoma International Prognostic Index.

PRIOR THERAPIES

Characteristic	N=124
Median no. of prior therapies (range)	2 (1-5)
Refractory disease, n (%) ^a	30 (24)
Prior therapy, n (%)	
Rituximab as single agent or part of a regimen	118 (95)
CHOP-based regimen	64 (52)
Bendamustine ± rituximab	27 (22)
Hyper-CVAD	26 (21)
Bortezomib/carfilzomib	24 (19)
Stem cell transplant	22 (18)
Lenalidomide	9 (7)

^a Refractory disease was defined as a lack of at least a partial response to the last therapy before study entry. CHOP = cyclophosphamide, doxorubicin, vincristine and prednisone; CVAD = cyclophosphamide, vincristine, doxorubicin and dexamethasone.

PATIENT DISPOSITION

• At a median follow-up of 15.2 months, 56% of patients remain on treatment

	N=124
Median follow-up, months (range)	15.2 (0.3-23.7)
On acalabrutinib, n (%)	70 (56)
Discontinued acalabrutinib, n (%)	54 (44)
Disease progression	39 (31)
Adverse event ^a	7 (6)
Initiation of subsequent anticancer therapy ^b	5 (4)
Lost to follow-up	1 (1)
Withdrawal of consent	1 (1)
Other ^c	1 (1)
Median relative dose intensity, % (range)	98.5 (27.1-100.0)

^a AEs leading to discontinuation occurred in only one patient each and were aortic stenosis, B-cell lymphoma (DLBCL), blood blister and petechiae (both in 1 patient with Grade 3 acute coronary syndrome which was treated with Plavix, resulting in blood blister/petechiae formation [considered related]), dyspnea and leukostasis syndrome (in the same patient), noncardiac chest pain, pulmonary fibrosis and thrombocytopenia.

^b All 5 patients received a stem cell transplant.

^c Patient decision to stop treatment.

MOST COMMON ADVERSE EVENTS

Head. 24 2 Diarrhea 17 Fatigue 19 Myalgia 15 Cough Grade 1 Nausea 10 Grade 2 Pyrexia 11 Grade 3 Grade ≥3 AEs occurring in ≥5% of all patients Grade 4 Anemia 8 Neutr. Pneu.. 10 30 20 40 50 100 0 % of Patients

AEs occurring in ≥15% of all patients

AE = adverse event.

SERIOUS ADVERSE EVENTS

- SAEs occurred in 48 patients (39%)
 - SAEs reported in \geq 2 patients:
 - Pneumonia (n=5 [4%])
 - Anemia (n=4 [3%])
 - General physical health deterioration (n=3 [2%])
 - Sepsis (n=2 [2%])
 - Tumor lysis syndrome (n=2 [2%])
 - Vomiting (n=2 [2%])
- One Grade 3 GI hemorrhage occurred in a patient with a history of GI ulcer
- One Grade 5 AE (aortic stenosis) occurred in a patient with a history of aortic stenosis (not treatment related)

EVENTS OF CLINICAL INTEREST

- There were no cases of atrial fibrillation
- Grade 3/4 cardiac AEs (n=3):
 - Grade 3 acute coronary syndrome (n=1, treatment-related)
 - Grade 3 acute myocardial infarction (n=1, not treatment-related)
 - Grade 4 cardiorespiratory arrest (n=1, not treatment-related)
- Infections of any grade occurred in 53% of patients, with Grade 3/4 infections in 13% of patients
- Bleeding events, the most frequent being were contusion (13%) and petechiae (9%), occurred in 31% of patients and were all Grade 1/2 except for one Grade 3 GI hemorrhage (1%) in a patient with a history of GI ulcer

RESPONSE TO ACALABRUTINIB

٠	The primary endpoint was	ORR using the 2014 Lugano Classification				
investigator-assessed ORR			N=124			
	according to the 2014 Lugano Classification ¹		Investigator assessed	IRC assessed		
			n (%)	<u>n (%)</u>		
•	High concordance was	ORR (CR + PR)	100 (81)	99 (80)		
	observed between	Best response				
	investigator- and IRC-	CR	49 (40)	49 (40)		
	assessed ORR and CR (91%	PR	51 (41)	50 (40)		
	and 94%, respectively)	SD	11 (9)	9 (7)		
		PD	10 (8)	11 (9)		
•	IRC-assessed ORR by 2007 IHP criteria (exploratory	Not evaluable	3 (2)	5 (4)		

CR = complete response; IHP = International Harmonization Project; IRC = Independent Review Committee; ORR = overall response rate; PD = progressive disease; PR = partial response; SD = stable disease.

1. Cheson BD, et al. J Clin Oncol. 2014;32:3059-68. 2. Cheson BD, et al. J Clin Oncol. 2007;25:579-86.

endpoint) was 75% with a CR

rate of 30%²

- ---

% (95% CI)

80.6 (72.6, 87.2)

77.3 (62.2, 88.5)

82.5 (72.4, 90.1)

81.3 (67.4, 91.1) 88.9 (77.4, 95.8)

57.1 (34.0, 78.2)

84.5 (74.0, 92.0)

79.5 (64.7, 90.2)

55.6 (21.2, 86.3)

78.1 (66.0, 87.5)

83.3 (71.5, 91.7)

77.8 (67.8, 85.9)

88.2 (72.5, 96.7)

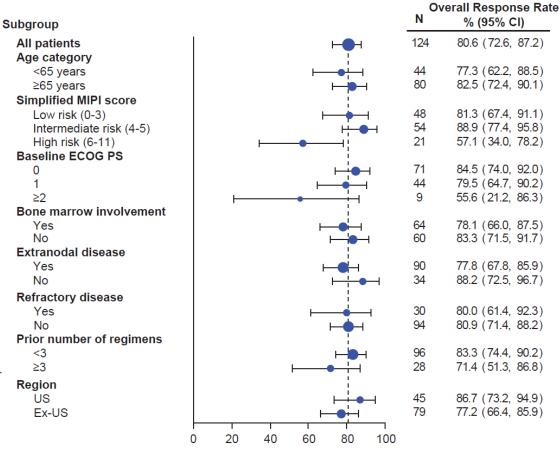
80.0 (61.4, 92.3)

80.9 (71.4, 88.2)

83.3 (74.4, 90.2)

71.4 (51.3, 86.8)

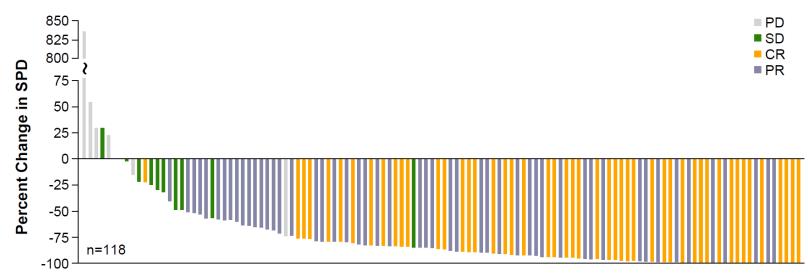
86.7 (73.2, 94.9)


77.2 (66.4, 85.9)

SUBGROUP ANALYSIS OF ORR

ORR was consistent • across all prespecified subgroups

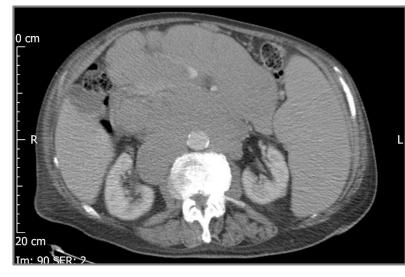
95% confidence interval was based on exact binomial distribution. No differences were observed by sex. race. Ann Arbor stage, tumor bulk, or prior lenalidomide exposure (data not shown).


ECOG PS = Eastern Cooperative Oncology Group Performance Status; MIPI = Mantle Cell Lymphoma International Prognostic Index: ORR = overall response rate: US = United States.

Overall Response Rate, %

CHANGE IN TUMOR BURDEN AND BEST RESPONSE STATUS PER LUGANO CLASSIFICATION¹

Most patients (94%) experienced a reduction in lymphadenopathy^a

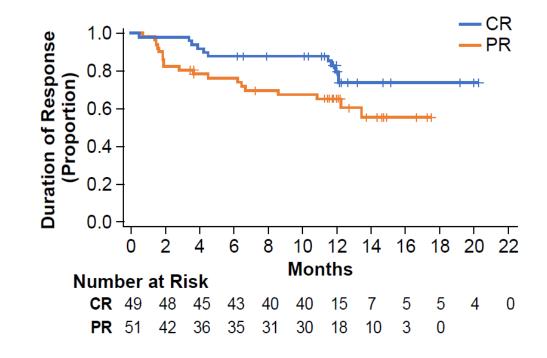


^a Maximum change from baseline in SPD for all treated patients with baseline and \geq 1 postbaseline lesion measurement. Six subjects were excluded due to early PD by evidence other than CT (n=4), started subsequent anticancer therapy (n=1) or death (n=1).

CR = complete response; CT = computed tomography; PD = progressive disease; PR = partial response; SD = stable disease; SPD = sum of product diameters. 1. Cheson BD, et al. J Clin Oncol. 2014;32:3059-68.

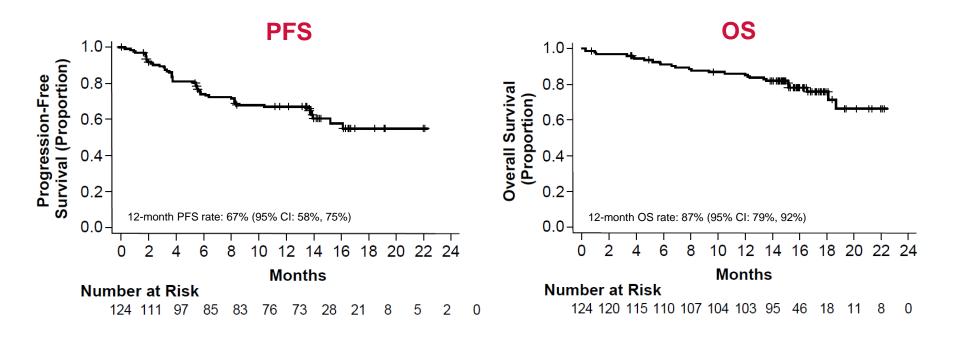
CT SCANS OF TUMOR RESPONSE TO ACALABRUTINIB

 Axial images of a 92-year-old male with chemorefractory MCL treated with acalabrutinib


Before Treatment

After 7 Months of Treatment

DURATION OF RESPONSE


- Median time to response was 1.9 months (range 1.5-4.4)
 - 92% of responders had initial response by end of cycle 2
- Median DOR has not been reached; the 12month DOR rate was 72% (95% CI: 62%, 80%)

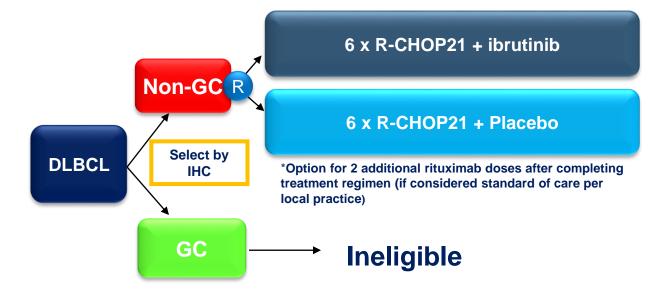
CR = complete response; DOR = duration of response; PR = partial response.

PROGRESSION-FREE SURVIVAL AND OVERALL SURVIVAL

• Median PFS and median OS have not been reached

ACE-LY-308 ECHO: TRIAL

- Global, two arm, randomized, double blind, placebo controlled trial
 - Treatment naïve MCL patients age ≥ 65
- N=546
- Randomized 1:1
 - Test: Bendamustine + rituximab + acalabrutinib
 - Control: Bendamustine + rituximab + acalabrutinib
 - 6 cycles of B+ R with continuous acalabrutinib/placebo treatment
 - Rituximab maintenance after cycle 6 if CR or PR


• Primary endpoint:

 PFS as determined by blinded independent review committee (IRC) using Lugano Classification for NHL (Cheson 2014) response criteria

• Crossover:

 Option of crossover to acalabrutinib for patients who progress during study via unblinding

PHEONIX CLINICAL STUDY DESIGN: DOUBLE BLIND RANDOMISED PHASE III

- Newly diagnosed DLBCL of non-GC
- ECOG PS ≤ 2; Age 18–80
- Primary Endpoint = EFS
- N = 800

CONCLUSION

ACP-196 is a second-generation, selective Btk inhibitor with favorable biochemical and pharmacokinetic properties.

ACP-196 has a promising safety profile

In MCL (but not WM) no episodes of atrial fibrillation or major bleeding observed at this time.

Head to head trial v ibrutinib on-going in CLL

Early onset treatment-related lymphocytosis was not as significant or persistent as reported with other BCR antagonists.

Is it more active